Does diffusion kurtosis imaging lead to better neural tissue characterization? A rodent brain maturation study

نویسندگان

  • Matthew M. Cheung
  • Edward S. Hui
  • Kevin C. Chan
  • Joseph A. Helpern
  • Liqun Qi
  • Ed X. Wu
چکیده

Diffusion kurtosis imaging (DKI) can be used to estimate excess kurtosis, which is a dimensionless measure for the deviation of water diffusion profile from Gaussian distribution. Several recent studies have applied DKI to probe the restricted water diffusion in biological tissues. The directional analysis has also been developed to obtain the directionally specific kurtosis. However, these studies could not directly evaluate the sensitivity of DKI in detecting subtle neural tissue alterations. Brain maturation is known to involve various biological events that can affect water diffusion properties, thus providing a sensitive platform to evaluate the efficacy of DKI. In this study, in vivo DKI experiments were performed in normal Sprague-Dawley rats of 3 different ages: postnatal days 13, 31 and 120 (N=6 for each group). Regional analysis was then performed for 4 white matter (WM) and 3 gray matter (GM) structures. Diffusivity and kurtosis estimates derived from DKI were shown to be highly sensitive to the developmental changes in these chosen structures. Conventional diffusion tensor imaging (DTI) parameters were also computed using monoexponential model, yielding reduced sensitivity and directional specificity in monitoring the brain maturation changes. These results demonstrated that, by measuring directionally specific diffusivity and kurtosis, DKI offers a more comprehensive and sensitive detection of tissue microstructural changes. Such imaging advance can provide a better MR diffusion characterization of neural tissues, both WM and GM, in normal, developmental and pathological states.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Towards better MR characterization of neural tissues using directional diffusion kurtosis analysis

MR diffusion kurtosis imaging (DKI) was proposed recently to study the deviation of water diffusion from Gaussian distribution. Mean kurtosis, the directionally averaged kurtosis, has been shown to be useful in assessing pathophysiological changes, thus yielding another dimension of information to characterize water diffusion in biological tissues. In this study, orthogonal transformation of th...

متن کامل

Detection of brain maturation - DTI with different B-values versus diffusion kurtosis imaging

Introduction DTI offers an unprecedented capability to probe tissue microstructure in vivo and non-invasively. However, DTI indices obtained from different b-values may probe different information regarding the complex diffusion processes in vivo. The non-monoexponential DW signal decay with b-value is largely attributed to the diffusion restriction due to underlying cellular microstructures. C...

متن کامل

Diffusional kurtosis imaging of the developing brain.

BACKGROUND AND PURPOSE Diffusional kurtosis imaging is an extension of DTI but includes non-Gaussian diffusion effects, allowing more comprehensive characterization of microstructural changes during brain development. Our purpose was to use diffusional kurtosis imaging to measure age-related microstructural changes in both the WM and GM of the developing human brain. MATERIALS AND METHODS Dif...

متن کامل

Data for evaluation of fast kurtosis strategies, b-value optimization and exploration of diffusion MRI contrast

Here we describe and provide diffusion magnetic resonance imaging (dMRI) data that was acquired in neural tissue and a physical phantom. Data acquired in biological tissue includes: fixed rat brain (acquired at 9.4 T) and spinal cord (acquired at 16.4 T) and in normal human brain (acquired at 3 T). This data was recently used for evaluation of diffusion kurtosis imaging (DKI) contrasts and for ...

متن کامل

Stratification of heterogeneous diffusion MRI ischemic lesion with kurtosis imaging: evaluation of mean diffusion and kurtosis MRI mismatch in an animal model of transient focal ischemia.

BACKGROUND AND PURPOSE Ischemic tissue damage is heterogeneous, resulting in complex patterns in the widely used diffusion-weighted MRI. Our study examined the spatiotemporal characteristics of diffusion kurtosis imaging in an animal model of transient middle cerebral artery occlusion. METHODS Adult male Wistar rats (N=18) were subjected to 90 minutes middle cerebral artery occlusion. Multipa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • NeuroImage

دوره 45 2  شماره 

صفحات  -

تاریخ انتشار 2009